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1 Specifications

In the Hull-White model, the Q dynamics of the spot rate is given by the following sto-
chastic differential equation (SDE) also know as the Ohrnstein-Uhlenbeck process

dr(t) = (Θ(t) − κr(t)) dt + σdW (t) (1)

where Θ(t)
κ

is the long term level to which the spot rate, r(t), is moving, κ is the rate at
which the spot rate rate is pushed towards the long term level and W (t) is a Brownian
motion under Q. σ is the constant volatility of changes in the spot rate. σ is assumed
constant in this note.

Using the spot rate defined by (1), we construct a money market account by

A(t) = e−
R

t

0
rudu (2)

dA(t) = −rtA(t)dt (3)

The specification of the spot rate, means that the Hull-White model belongs to the
affine class of interest rate models and thus prices of zero coupon bonds at time t for the
time T maturity have the following form

P (t, T ) = eα(t,T )+β(t,T )rt (4)

The T -yield at t time t, y(t, T ) is defined as

y(t, T ) =
− lnP (t, T )

T − t

We generally want the model to be calibrated to the market today meaning that model
prices of zero coupon bonds today, P (0, T ) ∀ T , is equal to the prices observed in the
market. This can be achieved by choosing Θ(t) in equation (1) so that the initial yield
curve is matched.

2 Closed Form Solution for Prices of Zero Coupon Bonds

We will now find explicit formulas for the functions α(t, T ) and β(t, T ) in (4) and thus
closed form solutions for zero coupon bonds in the Hull-White model. First, however, we
derive the fundamental partial differential equation for zero coupon prices in the Hull-
White model. Start by finding the dynamics of zero coupon prices by employing Ito’s
lemma.

dP (t, T ) = ∂P
∂t

dt + ∂P
∂r

dr(t) + 1
2

∂2P
∂r2 (dr(t))2

Inserting the spot rate dynamics (1) yields

dP (t, T )

P (t, T )
=

(
∂α(t, T )

∂t
+

∂β(t, T )

∂t
r(t)

)

dt + β(t, T )dr(t) +
1

2
β2(t, T ) (dr(t))2

=

(
∂α(t, T )

∂t
+

∂β(t, T )

∂t
r(t) + β(t, T )Θ(t) − β(t)κrt +

1

2
β2(t, T )σ2

)

dt

+β(t, T )σdW (t)
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We now use the dynamics of the money market account given by (3) and the dynamics of
the zero coupon bonds in (5) to find the dynamics of deflated zero coupon bond prices

dA(t)dP (t, T ) = A(t)dP (t, T ) + P (t, T )dA(t) +

=0
︷ ︸︸ ︷

dA(t)dP (t, T )

Again inserting what is know we get

dA(t)dP (t, T )

A(t)P (t, T )
=

(
∂α(t, T )

∂t
+

∂β(t, T )

∂t
r(t) + β(t, T )Θ(t)

−β(t)κrt +
1

2
β2(t, T )σ2 − rt

)

dt + β(t, T )σdW (t)

Under the equivalent martingale measure, Q, deflated prices are martingales. According
to the martingale representation theorem we must thus have that the dt-term must be
equal to zero, and this holds for all t and rt. Thus

∂α(t, T )

∂t
+ β(t, T )Θ(t) +

1

2
β2(t, T )σ2 = 0

α(T, T ) = 0

∂β(t, T )

∂t
− κβ(t, T ) − 1 = 0

β(T, T ) = 0

(5)

(6)

(7)

(8)

We solve the two ordinary differential equations by first postulating a solution for β(t, T )

β(t, T ) =
1

κ

(

e−κ(T−t) − 1
)

(9)

It is easy to check that the solution in (9) in fact solves the ODE in (7) subject to the
boundary condition in (8). Since the derivative of α(t, T ) only depends on β(t, T ) simple

integration of ∂α(u,T )
∂u

between t and T is a solution to (5). Recall that

∫ T

t

∂α(t, T )

∂t
du = [α(u, T )]Tt = α(T, T ) − α(t, T ) (10)

and thus we have

α(t, T ) =

∫ T

t

β(u, T )Θ(u)du +
1

2

∫ T

t

β2(u, T )σ2du (11)

As mentioned above we wan’t the model to match current zero coupon prices. This is done
by choosing Θ(u) in (11) so that the initial yield curve is matched. Instead of calibrating
the model to zero coupon yields directly, we calibrate the model to the term structure of
forward rates. Forward rates are defined as

fM (0, T ) ≡ −
∂ lnP (0, T )

∂T
= −

∂

∂T
α(0, T ) −

∂

∂T
β(0, T )r0

From (9) we get

∂

∂T
β(t, T ) = −e−κ(T−t) (12)
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Using Leibniz’s rule for differentiating integrals we have from (11), (6) and (8)

∂

∂T
α(0, T ) = β(T, T )Θ(T ) +

∫ T

0

∂

∂T
β(u, T )Θ(u)du

1

2
β2(T, T )σ2 + σ2

∫ T

0
β(u, T )

∂

∂T
β(u, T )du

Inserting (9) and (12) yields

∂

∂T
α(0, T ) = −

∫ T

0
e−κ(T−u)Θ(u)du −

σ2

κ

∫ T

0

(

e−κ(T−u) − 1
)

e−κ(T−u)du

= −

∫ T

0
e−κ(T−u)Θ(u)du −

σ2

κ2

[
1

2

(
1 − e−2κT

)
−
(
1 − e−κT

)
]

Putting things together we get

fM (0, T ) =

∫ T

0
e−κ(T−u)Θ(u)du (13)

+
σ2

κ2

[
1

2

(
1 − e−2κT

)
−
(
1 − e−κT

)
]

+ e−κT r0 (14)

To isolate Θ(T ) we differentiate with respect to T

∂fM (0, T )

∂T
= Θ(T ) − κ

∫ T

t

e−κ(T−u)Θ(u)du

+
σ2

κ

(
e−2κT − e−κT

)
− κe−κT r0

Using (13) this can be written as

∂fM (0, T )

∂T
= Θ(T ) − κfM (0, T ) +

σ2

κ

[
1

2

(

1 − e−2κT )
)

−
(

1 − e−κT )
)]

+κe−κT r0 +
σ2

κ

(
e−2κT − e−κT

)
− κe−κT r0

= Θ(T ) − κfM (0, T ) −
σ2

2κ

(
1 − e−2κT

)

And thus

Θ(T ) =
∂fM (0, T )

∂T
+ κfM (0, T ) +

σ2

2κ

(
1 − e−2κT

)
(15)

Now that we know Θ(T ) we can plug it into (11) to find an expression for α(t, T ). We
compute first the integral

σ2

2

∫ T

t

β2(u, T )du

=
σ2

2κ2

∫ T

t

(

e−κ(T−u)−1
)2

du

=
σ2

2κ2

[
1

2κ

(

1 − e−2κ(T−t)
)

+ (T − t) −
2

κ

(

1 − e−κ(T−t)
)]

(16)
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Next we compute the integral
∫ T

t

β(u, T )Θ(u)du =
1

κ

∫ T

t

(

e−κ(T−u) − 1
)

Θ(u)du

=
1

κ

∫ T

t

e−κ(T−u)Θ(u)du −
1

κ

∫ T

t

Θ(u)du

Inserting (15) yields

1

κ

∫ T

t

e−κ(T−u)

(
∂fM (0, u)

∂u
+ κfM (0, u)

)

du

−
1

κ

∫ T

t

∂fM (0, u)

∂u
− κfM (0, u)du

+
σ2

2κ

∫ T

t

(

e−κ(T−u) − 1
) (

1 − e−2κu
)
du (17)

Computing the last integral yields

σ2

2κ

∫ T

t

(

e−κ(T−u) − 1
) (

1 − e−2κu
)
du =

σ2

2κ3

[

1 − e−κ(T−t) +
1

2
e−2κT − e−κ(T+t) +

1

2
e−2κt

]

−
σ2

2κ2
(T − t)

We now have
∫ T

t

β(u, T )Θ(u)du =

1

κ

∫ T

t

e−κ(T−u) ∂fM (0, u)

∂u
du +

∫ T

t

e−κ(T−u)fM (0, u)du

−
1

κ

[
fM (0, u)

]T

t
−

∫ T

t

fM (0, u)du

+
σ2

2κ3

[

1 − e−κ(T−t) +
1

2
e−2κT − e−κ(T+t) +

1

2
e−2κt

]

−
σ2

2κ2
(T − t) (18)

Now use the integration by parts formula on the first term on the right hand side in
equation (18)

1

κ

∫ T

t

e−κ(T−u)

(
∂fM (0, u)

∂u

)

du =
1

κ

[

e−κ(T−u)fM (0, u)
]T

t

−

∫ T

t

e−κ(T−u)fM (0, u)du

to get
∫ T

t

β(u, T )Θ(u)du =

1

κ

[

e−κ(T−u)fM (0, u)
]T

t
−

∫ T

t

e−κ(T−u)fM (0, u)du

+

∫ T

t

e−κ(T−u)fM (0, u)du −
1

κ

(
fM (0, T ) − fM (0, t)

)
−

∫ T

t

fM (0, u)du

+
σ2

2κ3

[

1 − e−κ(T−t) +
1

2
e−2κT − e−κ(T+t) +

1

2
e−2κt

]

−
σ2

2κ2
(T − t) (19)
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Now simplifying gives

∫ T

t

β(u, T )Θ(u)du = −fM (0, t)β(t, T ) −

∫ T

t

fM (0, u)du

+
σ2

2κ3

[

1 − e−κ(T−t) +
1

2
e−2κT − e−κ(T+t) +

1

2
e−2κt

]

−
σ2

2κ2
(T − t) (20)

Combining the two integrals (16) and (20) we get

α(t, T ) =

∫ T

t

β(u, T )Θ(u)du +
σ2

2

∫ T

t

β2(t, T )du

= −fM (0, t)β(t, T ) −

∫ T

t

fM (0, u)du

+
σ2

2κ3

[

1 − e−κ(T−t) +
1

2
e−2κT − e−κ(T+t) +

1

2
e−2κt

]

−
σ2

2κ2
(T − t)

+
σ2

2κ2

[
1

2κ

(

1 − e−2κ(T−t)
)

+ (T − t) −
2

κ

(

1 − e−κ(T−t)
)]

Simplifying yields

α(t, T ) = −fM (0, t)β(t, T ) −

∫ T

t

fM (0, u)du

+
σ2

4κ
β2(t, T )

(
e−2κt − 1

)
(21)

We also have that

P (0, T ) = e−
R

T

t
f(0,u)du

which leads to

lnP (0, T ) = −

∫ T

0
f(0, u)du

and thus

ln

(
P (0, T )

P (0, t)

)

= −

∫ T

t

f(0, u)du

and we have

α(t, T ) = − fM (0, t)β(t, T ) + ln

(
P (0, T )

P (0, t)

)

+
σ2

4κ
β2(t, T )

(
e−2κt − 1

)
(22)

3 Solving the Stochastic Differential Equation

The solution to the SDE in equation (1) can be found by employing Ito’s lemma to find
the dynamics of eκtr(t) and then integrating up. This yields the solution to (1)

rT = e−κ(T−t)rt +

∫ T

t

e−κ(T−u)Θ(u)du + σ

∫ T

t

e−κ(T−u)dWu
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Since EQ
[

σ
∫ T

t
e−κ(T−u)dWu|Ft

]

= 0, we have

E
Q
t [rT ] = e−κ(T−t)rt +

∫ T

t

e−κ(T−u)Θ(u)du

VarQ
t [rT ] = E

Q
t

[(

rt − E
Q
t [rT ]

)2
]

= σ2

∫ T

t

e−2κ(T−u)du

Notice that
∫ T

t

e−κ(T−u)Θ(u)du = −

∫ T

t

∂

∂T
β(u, T )Θ(u)du

Liebniz’s rule for differentiating integral gives

∂

∂T

∫ T

t

β(u, T )Θ(u)du = β(T, T )Θ(T ) +

∫ T

t

∂

∂T
β(u, T )Θ(u)du

where the first term on the right hand side is equal to zero according to (8). Thus we have

∫ T

t

e−κ(T−u)Θ(u)du = −
∂

∂T

∫ T

t

β(u, T )Θ(u)du

Differentiating (20) with respect to T we get

∫ T

t

e−κ(T−u)Θ(u)du = fM (0, t)
∂

∂T
β(t, T ) +

∂

∂T

∫ T

t

fM (0, u)du

−
σ2

2κ2

(

e−κ(T−t) − e−2κT + e−κ(T+t) − 1
)

= −fM (0, t)e−κ(T−t) + fM (0, T ) −

∫ T

t

∂

∂T
fM (0, u)

︸ ︷︷ ︸

=0

−
σ2

2κ2

(

e−κ(T−t) − e−2κT + e−κ(T+t) − 1
)

Now add and subtract σ2

2κ2 (1 − e−kT )2 and simplify to get

∫ T

t

e−κ(T−u)Θ(u)du = γ(T ) − γ(t)e−κ(T−t)

where

γ(t) = fM (0, t) +
σ2

2κ2

(

1 − e−kt
)2

Thus the conditional expectation of the future spot rate can now be written as

E
Q
t [rT ] = e−κ(T−t)rt + γ(T ) − γ(t)e−κ(T−t) (23)

And the conditional varians is given by

VarQ
t =

σ2

2κ

(

1 − e−2κ(T−t)
)

(24)
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4 Floaters and Caplets

In this section the Hull-White model is used to value a future stochastic rate today. We
want to compute the price of a payment received at time TA

2 . This payment covers interest
over the period from time TA

1 to TA
2 . The payment is not known until time TF

1 where it is
fixed as the simple rate over the period TF

1 to TF
2 .

TF
1 TA

1 TA
2 TF

2

The following notation is used

TF
1 : Start date of fixing period

TF
2 : End date of fixing period

TA
1 : Start date of accrual period

TA
2 : End date of accrual period

∆1 : Accrual period in years (TA
2 − TA

1 )

∆2 : Fixing period in years (TF
2 − TF

1 )

At time TF
1 the spot LIBOR rate over the fixing period is given by

L(TF
1 , TF

2 ) =
1

∆2

(
1

P (TF
1 , TF

2 )
− 1

)

(25)

Since the accrual period is ∆1 the payment received at time TA
2 is equal to ∆1L(TF

1 , TF
2 ).

The value at time t of the unknown payment is given by

V (t) = E
Q
t

[

e−
R T

A
2

t
ru du∆1L(TF

1 , TF
2 )

]

(26)

= E
Q
t

[

e−
R T

F
1

t
ru du∆1L(TF

1 , TF
2 ) E

Q

TF
1

[

e
−

R T
A
2

TF
1

ru du

]]

(27)

= E
Q
t

[

e−
R T

F
1

t
ru duP (TF

1 , TA
2 )∆1L(TF

1 , TF
2 )

]

(28)

Changing from the risk-neutral measure to the forward measure with the zero-coupon
bond maturing at time TF

1 as numeraire yields

V (t) = P (t, TF
1 )E

TF
1

t

[
P (TF

1 , TA
2 )∆1L(TF

1 , TF
2 )
]

(29)

which is the same as

V (t) = P (t, TF
1 )

∆1

∆2
E

TF
1

t

[(
P (TF

1 , TA
2 )

P (TF
1 , TF

2 )
− P (TF

1 , TA
2 )

)]

=
∆1

∆2

{

P (t, TF
1 )E

TF
1

t

[(
P (TF

1 , TA
2 )

P (TF
1 , TF

2 )

)]

− P (t, TA
2 )

}

(30)

In the Hull-White model, the ration P (TF
1 , TA

2 )/P (TF
1 , TF

2 ) is equal to

P (TF
1 , TA

2 )

P (TF
1 , TF

2 )
= e

α(TF
1
,TA

2
)−α(TF

1
,TF

2
)+(β(TF

1
,TA

2
)−β(TF

1
,TF

2
))r

TF
1
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Which is used to get

V (t) =
∆1

∆2

{

P (t, TF
1 )eα(TF

1
,TA

2
)−α(TF

1
,TF

2
)E

TF
1

t

[

e
(β(TF

1
,TA

2
)−β(TF

1
,TF

2
))r

TF
1

]

− P (t, TA
2 )

}

(31)

The only unknown object in Equation (31) is E
TF

1

t

[

e
(β(TF

1
,TA

2
)−β(TF

1
,TF

2
))r

TF
1

]

, but this ex-

pectation can easily be computed since rTF
1

is normally distributed.

E
TF

1

t

[

exp
(

(β(TF
1 , TA

2 ) − β(TF
1 , TF

2 ))rTF
1

)]

=

exp

(

(β(TF
1 , TA

2 ) − β(TF
1 , TF

2 ))E
TF

1

t [rTF
1

] +
1

2
(β(TF

1 , TA
2 ) − β(TF

1 , TF
2 ))2Var

TF
1

t [rTF
1

]

)

(32)

which can be inserted into (31) to get a closed form solution for the value of a single float
payment.

Fixing at an Average Rate

V (t) = E
Q
t

[

e−
R T

A
2

t
ru du ∆1

M

M∑

i=1

L(TF
1i, T

F
2i)

]

=
∆1

M

M∑

i=1

E
Q
t

[

e−
R T

A
2

t
ru duL(TF

1i, T
F
2i)

]

The last expression has exactly the same form as the expression found in the previous
section and it’s value is thus know in closed form.

Caplet Pricing with Unnatural Time Lag We will now find the value of a caplet
that caps the simple compounded interest rate given in Equation (25). The rate is fixed
over the period from TF

1 to TF
2 but it is paid out at time TA

2 .

cpl(t, TF
1 , TF

2 , TA
2 ) = E

Q
t

[

e−
R T

A
2

t
ru du∆1

(
L(TF

1 , TF
2 ) − K

)+
]

= ∆1P (t, TA
2 )E

TA
2

t

[(
L(TF

1 , TF
2 ) − K

)+
]

=
∆1

∆2
P (t, TA

2 )E
TA

2

t

[(
1

P (TF
1 , TF

2 )
− (1 + ∆2K)

)+
]

=
∆1

∆2
P (t, TA

2 )E
TA

2

t

[(

e
−α(TF

1
,TF

2
)−β(TF

1
,TF

2
)r

TF
1 − (1 + ∆2K)

)+
]

=
∆1

∆2
P (t, TA

2 )e−α(TF
1
,TF

2
)E

TA
2

t

[(

e
−β(TF

1
,TF

2
)r

TF
1 − eα(TF

1
,TF

2
)(1 + ∆2K)

)+
]

Since rTF
1

∼ Φ(Mr, V
2
r ), where Mr and V 2

r is the mean and variance of rTF
1

respectively

and Φ is the standard cumulative normal distribution function, we have −β(TF
1 , TF

2 )rTF
1

∼

Φ(−β(TF
1 , TF

2 )Mr, β(TF
1 , TF

2 )2V 2
r ). From Brigo and Mercurio (2001) we have the following

for a lognormally distributed stochastic variable X with mean M and variance V

E
[
(X − K)+

]
= eM+ 1

2
V 2

Φ

(
M − ln(K) + V 2

V

)

− KΦ

(
M − ln(K)

V

)

(33)

8



The caplet value can now be computed with M = −β(TF
1 , TF

2 )Mr and V = β(TF
1 , TF

2 )Vr

which yields

cpl(t, TF
1 , TF

2 , TA
2 ) =

∆1

∆2
P (t, TA

2 )e−α(TF
1
,TF

2
)

(

e−β(TF
1
,TF

2
)Mr+ 1

2
β(TF

1
,TF

2
)2V 2

r Φ(d1)

−
(

eα(TF
1
,TF

2
)(1 + ∆2K)

)

Φ
(
d1 − β(TF

1 , TF
2 )Vr

)

)

(34)

where

d1 =
−β(TF

1 , TF
2 )Mr − ln(eα(TF

1
,TF

2
)(1 + ∆2K)) + β(TF

1 , TF
2 )2V 2

r

β(TF
1 , TF

2 )Vr

(35)
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